Серое олово применение. Изделия из олова и другие области применения чистого металла, а также его различных сплавов. Изделия из олова

Олово – один из семи древнейших металлов, то есть, известных человеческой цивилизации. Олово входит в – сплава, имеющего в прошлом настолько большое значение, что соответствующий период времени называют «бронзовым веком».

Сейчас столь большое значение олово утратило, однако продолжает использоваться. Поэтому сегодня нами будут рассмотрены понятие, особенности, формула олова, его техническое значение и области применения, цена за а 1 кг лома металла и подобные нюансы.

Часто возникают споры о том, олово — это металл или неметалл. Химический элемент олово – Sn, помещается в 14 группе таблицы элементов Д. И. Менделеева в 5 периоде вместе с углеродом, кремнием и германием. Такое расположение указывает на амфотерность вещества: оно проявляет и кислотные, и основные свойства.

Молекулярный вес – 50, то есть, вещество относится к категории легких.

Об олове как уникальном элементе расскажет данный видеоролик:

Понятие и особенности

Олово – легкий, ковкий, пластичный металл белого цвета с мягким серебристым блеском. Со временем блеск на изделиях тускнеет, что, как правило, недостатком не считается. Металл относится к редким рассеянным элементам, что затрудняет его добычу.

Применение олова напрямую связано с его свойствами:

  • температура плавления олова – +231,9 С;
  • температура кипения – 2600 С;
  • температура литья – 260–300 С, что и обуславливает превосходную ковкость, как самого металла, так и сплавов из него;
  • теплопроводность при нормальной температуре – 65,8 Вт/(м К);
  • удельная электропроводность – 8,69 МСм/м;
  • сопротивление разрыву – до 20 МПа.

Все свойства металлов оцениваются при нормальной температуре, то есть, при 20 С. Соответственно, данные применимы для той модификации вещества, которая устойчива при этой температуре.

Олово совершенно нетоксично, не воздействует на человеческий организм, а потому применяется в пищевой промышленности. Использование оловянной посуды или трубопровода для водоснабжения тоже вреда не причинят.

В человеческом организме элемент встречается в основном в костях, где способствует процессу нормального обновления костной ткани. Олово относится к макроэлементам: для нормального функционирования человеку необходимо от 2 до 10 мг в сутки. На деле металл попадает в организм с пищей в куда большем количестве, но, так как кишечник в состоянии усвоить не более 3–5% поступлений, то отравление невозможно.

Недостаток макроэлемента в первую очередь замедляет рост, а также обуславливает потерю слуха, облысение, изменение состава костной ткани. А вот поглощение паров олова или пыли, содержащей его соединения, к отравлению привести могут.

Свойства металла

Олово – металл непрочный. Куда больший интерес для современного народного хозяйства представляет его высокая коррозийная стойкость. Оловянное покрытие издавна применяется для защиты металлических предметов, в частности, консервных банок.

Еще одно интересное свойство – способность соединять собой разные металлы, образуя прочную, устойчивую к внешним воздействиям связь. Используют для этого как само олово – в частности, для лужения посуды и предметов быта, так и припои – сплавы металла со свинцом. Сплав относят к категории мягких припоев и активно применяют в электро- и радиотехнике.

По своим качествам и внешнему виду вещество ближе всего к алюминию. На деле сходство это весьма относительное. Оба металла относятся к легким, оба нечувствительны к коррозии и действию погодных факторов. Однако алюминий нестоек к действию кислот и щелочей, даже слабых – уксусной кислоты, например, в то время как олово реагирует только с концентрированными сильными кислотами.

Плюсы и минусы

В строительстве металл используется весьма ограниченно, поскольку не обладает механической прочностью, стойкостью к разрыву и так далее. Гораздо чаще применение находят сплавы.

Преимущества:

  • ковкость – имеет значение при изготовлении предметов быта. И посуда, и светильники, и подставки, и декоративные предметы могут выглядеть необыкновенно красиво. При этом температура ковки невелика, а, значит, незначительно удорожает изделие;
  • инертность делает металл применимым в пищевой промышленности, поскольку он никак не взаимодействует с органическими кислотами или основаниями;
  • низкая температура плавления облегчает процесс нанесения металла на поверхность и снижает энергопотери;
  • олово и его – самый известный, распространенный и доступный мягкий припой ;
  • металл и его сплавы являются антифрикционными . Если вращающиеся и соприкасающиеся детали изготовить из самого вещества нельзя, то оловянное покрытие такой части машины значительно снижает трение, а, значит, защищает от преждевременного износа.

Недостатки:

  • К условным недостаткам металла относят его непрочность. Олово совершено не годится для производства любых деталей и частей, от которых требуется стойкость к нагрузкам;
  • это элемент редкий, добыча и выплавка его довольно дороги, так что и само вещество оказывается дорогостоящим.

Сказать точно, сколько стоит 1 кг олова достаточно трудно, так как стоимость металлов постоянно меняется.

О том, что делать, если не липнет олово, расскажет специалист в видео ниже:

Структура и состав

Металлы однородны по , однако при разных температурах могут существовать разные структуры. Причем фазы заметно отличаются друг от друга по свойствам.

  • Наиболее известна β-модификация металла, поскольку именно она наличествует при температуре в 20 С. Устойчивой она становится при 13,2 С, и именно ее свойства – теплопроводность, температура кипения, и приводятся в качестве свойств металла.
  • Однако при температуре ниже 13,2 С вещество переходит в α-модификацию, так называемое серое олово. У α-модификации другая кристаллическая решетка, вещество обладает меньшей плотностью, не пластично и ковкостью не отличается.

Переход из β -модификации в α- сопровождается изменением в объеме – из-за разницы в плотности, а это приводит к разрушению оловянного изделия. Явление известно как «оловянная чума». Эта особенность очень ограничивает область применения металла.

  • В температурном диапазоне от 161 до 232 С существует γ-фаза. Однако ее свойства интересны только специалистам.

В природе олове встречается в горных породах, как рассеянный элемент, но может иметь и минеральные формы. Самая известная из последних – касситерит, оксид металла, а также станин, оловянный колчедан – его соединение с серой. Разрабатываются и другие минералы.

Производство материала

Выгодным делом является разработка руды с долей олова 0,1%. На деле эксплуатируются месторождения, где руда еще более бедна – до 0,01%. Добыча минерала производится разными методами в зависимости от характера месторождения – россыпное или коренное.

Основу россыпного месторождения составляют пески. Суть добычи сводится к промывке и концентрирования рудного минерала. Разработка коренного сложнее, так как подразумевают сооружение и эксплуатацию шахт.

  • Концентрат оловянного минерала перевозится на завод по плавке цветного металла. Здесь концентрат еще раз обогащается, затем измельчается и промывается.
  • Полученный таким образом рудный шлих восстанавливают в специальных печах. Процесс повторяют не менее 2 раз, поскольку шлак после полного восстановления содержит чересчур много вещества.
  • На последнем этапе черновое олово рафинируют – очищают от примесей термическим или электролитическим методом.

Полученный материал используют по назначению.

Применение сырья

Главным свойством, которое определяет , является его коррозионная стойкость. Причем олово не только само нечувствительно к химически агрессивным веществам, но и сообщает эту особенность большинству сплавов.

  • Более 50% всего производимого в мире металла используется для получения белой жести, то есть, листа, а чаще, предмета из стали, покрытого тончайшим слоем олова. Эту технологию впервые использовали для защиты консервных банок и применяют до сих пор.
  • Олово можно раскатывать, поэтому из него производят тонкостенные трубы. Бытовое применение их, однако, весьма ограничено, поскольку такие изделия не переносят низких температур.
  • А вот сантехника, фурнитура и другие аксессуары весьма популярны и всем известны. Материал гигиеничен, обладает более низкой теплопроводностью, чем сталь, например, поэтому активно используется при изготовлении ванн и умывальников.
  • Из олова изготавливают посуду, мелкие предметы быта и декора, ювелирные украшения. Причиной этому – прекрасная ковкость и красивый неяркий цвет металла олова.
  • Очень большая доля вещества используется для получения сплавов. Первое место занимает, конечно, . Последняя идеально соединяет прочность и стойкость к коррозии, что делает ее очень востребованным декоративно-строительным материалом.
  • Не менее известны и популярны припои. Причем в этом случае олово может использоваться и самостоятельно – для посуды, например, и в составе сплава.
  • Олово – тонально-резонансный металл. И , и сплав металла со применялись и применяются при изготовлении музыкальных инструментов. известны с очень древних времен. Органные трубы получают из сплава со свинцом. Причем именно его количество в сплаве определяет тон изделия.

Олово – легкий и непрочный металл, но зато отличающийся прекрасной стойкостью к коррозии и ковкостью. Именно эти свойства и обуславливают применение олова.

Данное видео расскажет, как расплавить олово в домашних условиях:

Каждый химический элемент периодической системы и образованные им простые и сложные вещества уникальны. Они имеют неповторимые свойства, а многие вносят неоспоримо значимый вклад в жизнь человека и существование в целом. Не исключение и химический элемент олово.

Знакомство людей с эти металлом уходит в глубокую древность. Этот химический элемент сыграл решающую роль в развитии человеческой цивилизации, по сей день свойства олова находят широкое применение.

Олово в истории

Первые упоминания о данном металле, имеющем, как люди считали раньше, даже некоторые магические свойства, можно найти в библейских текстах. Решающее значение для улучшения жизни олово сыграло в период «бронзового» века. На то время самым прочным металлическим сплавом, которым обладал человек, была бронза, её можно получить, если в медь добавить химический элемент олово. На протяжении нескольких веков из этого материала изготовляли всё, начиная от орудий труда и заканчивая ювелирными изделиями.

После открытия свойств железа сплав олова не перестал использоваться, конечно, он применяется не в прежних масштабах, но бронза, а также многие другие его сплавы активно задействованы сегодня человеком в промышленности, технике и медицине, наравне с солями этого металла, например, таким как хлорид олова, который получают взаимодействием олова с хлором, данная жидкость кипит при 112 градусах Цельсия, хорошо растворяется в воде, образует кристаллогидраты и дымит на воздухе.

Положение элемента в таблице Менделеева

Химический элемент олово (латинское название stannum - «станнум», записывается символом Sn) Дмитрий Иванович Менделеев по праву расположил под номером пятьдесят, в пятом периоде. Имеет ряд изотопов, самый распространённый - изотоп 120. Этот металл также находится в главной подгруппе из шестой группы, вместе с углеродом, кремнием, германием и флеровием. Его расположение предсказывает амфотерность свойств, в равной степени олову присущи и кислотные, и основные характеристики, которые более детально будут описаны ниже.

В таблице Менделеева также указана атомная масса олова, которая равняется 118,69. Электронная конфигурация 5s 2 5p 2 , что в составе сложных веществ позволяет металлу проявлять степени окисления +2 и +4, отдавая два электрона только с р-подуровня или же четыре с s- и р-, полностью опустошая весь внешний уровень.

Электронная характеристика элемента

В соответствии атомному номеру околоядерное пространство атома олова содержит целых пятьдесят электронов, они располагаются на пяти уровнях, которые, в свою очередь, расщеплены на ряд подуровней. Первые два имеют только s- и р-подуровни, а начиная с третьего идёт троекратное расщепление на s-, p-, d-.

Рассмотрим внешний так как именно его строение и заполнение электронами определяют химическую активность атома. В невозбуждённом состоянии элемент проявляет валентность, равную двум, при возбуждении происходит переход одного электрона с s-подуровня на вакантное место р-подуровня (он максимально может содержать три неспаренных электрона). В этом случае олово проявляет валентность и степень окисления - 4, так как спаренных электронов нет, а значит в процессе химического взаимодействия на подуровнях их ничто не удерживает.

Простое вещество металл и его свойства

Олово представляет собой металл серебряного цвета, относится к группе легкоплавких. Металл мягкий, сравнительно легко поддаётся деформации. Ряд особенностей присущ такому металлу, как олово. Температура ниже 13,2 является границей перехода металлической модификации олова в порошкообразную, что сопровождается изменением цвета с серебристо-белого на серый и уменьшением плотности вещества. Плавится олово при 231,9 градуса, а кипит при 2270 градусах Цельсия. Кристаллическая тетрагональная структура белого олова объясняет характерное похрустывание металла при его изгибе и нагреве в месте перегиба трением кристаллов вещества друг об друга. Серое олово имеет кубическую сингонию.

Химические свойства олова имеют двойственную суть, оно вступает как в кислотные, так и основные реакции, проявляя амфотерность. Металл взаимодействует с щелочами, а также кислотами, такими как серная и азотная, проявляет активность при реакции с галогенами.

Сплавы олова

Почему чаще вместо чистых металлов применяют их сплавы с определённым процентным содержанием составных компонентов? Дело в том, что сплаву присущи свойства, которых нет у индивидуального металла, или же эти свойства проявляются гораздо сильнее (например, электропроводность, стойкость к коррозии, пассивирование или активирование физических и химических характеристик металлов в случае необходимости и т.д.). Олово (фото показывает образец чистого металла) входит в состав многих сплавов. Оно может использоваться в качестве добавки или основного вещества.

На сегодняшний день известно большое количество сплавов такого металла, как олово (цена на них колеблется в широких пределах), рассмотрим самые популярные и применяемые (о применении тех или иных сплавов речь пойдёт в соответствующем разделе). В общем, сплавы станнума имеют следующие характеристики: высокая пластичность, низкая небольшая твёрдость и прочность.

Некоторые примеры сплавов


Важнейшие природные соединения

Олово образует ряд природных соединений - руд. Металл образует 24 минеральных соединения, самое важное значение для промышленности имеет оксид олова - касситерит, а также станин - Cu 2 FeSnS 4 . Олово рассеяно в земной коре, а соединения, образованные им, имеют магнетическое происхождение. В промышленности также используются соли полиоловянных кислот и силикаты олова.

Олово и организм человека

Химический элемент олово является микроэлементом по своему количественному содержанию в теле человека. Основное его скопление находится в костной ткани, где нормальное содержание металла способствует своевременному её развитию и общему функционированию опорно-двигательной системы. Помимо костей, олово концентрируется в желудочно-кишечном тракте, лёгких, почках и сердце.

Важно отметить, что избыточное накопление данного металла может привести к общему отравлению организма, а более длительное воздействие - даже к неблагоприятным генным мутациям. В последнее время эта проблема довольно актуальна, так как экологическое состояние окружающей среды оставляет желать лучшего. Большая вероятность интоксикации оловом у жителей мегаполисов и районов, близлежащих около промышленных зон. Чаще всего отравление происходит путем накопления в легких солей олова, например, таких как хлорид олова и других. В то же время недостаток микроэлемента может спровоцировать замедление роста, потерю слуха и выпадение волос.

Применение

Металл имеется в продаже на многих металлургических заводах и компаниях. Выпускается в виде чушек, прутков, проволоки, цилиндров, анодов, изготовленных из чистого простого вещества, такого как олово. Цена колеблется от 900 до 3000 рублей за кг.

Олово в чистом виде применяется редко. В основном используются его сплавы и соединения - соли. Олово для пайки применяется в случае скрепления деталей, которые не подвергаются воздействию высоких температур и сильных механических нагрузок, выполненных из медных сплавов, стали, меди, но не рекомендуется для изготовленных из алюминия или его сплавов. Свойства и характеристики оловянных сплавов описаны в соответствующем разделе.

Припои используют для пайки микросхем, в этой ситуации также идеально подходят сплавы на основе такого металла, как олово. Фото изображает процесс применения оловянно-свинцового сплава. С помощью него можно выполнить достаточно тонкие работы.

Ввиду высокой стойкости олова к коррозии его применяют для изготовления луженого железа (белой жести) - жестяных банок для пищевых продуктов. В медицине, в частности в стоматологии, олово задействовано для выполнения пломбирования зубов. Оловом покрыты домовые трубопроводы, из его сплавов изготовлены подшипники. Неоценимо важен вклад данного вещества и в электротехнику.

Водные растворы таких солей олова, как фторбораты, сульфаты, а также хлориды, используют в качестве электролитов. Оксид олова - это глазурь для керамики. Путём введения в пластические и синтетические материалы различных производных олова представляется возможным уменьшить их возгораемость и выделение вредоносных дымов.

Мягкий белый металл – олово – был одним из первых металлов, которые научился обрабатывать человек. Ученые считают, что добывать олово стали гораздо раньше, чем было впервые найдено железо.


Некоторые археологические находки подтверждают, что оловянные шахты на территории нынешнего Ирака работали уже четыре тысячи лет назад. Оловом торговали: купцы выменивали его на и драгоценные камни. В природе олово содержится в оксидной оловянной руде касситерите – минерале, залежи которого встречаются в Юго-Восточной Азии, Южной Америке, Австралии, Китае.

Из истории

По данным историков и археологов, впервые обнаружили олово, вероятнее всего, случайно, в наносных отложениях касситерита. Древние горны с отработанным шлаком удалось найти на юго-западе Великобритании. Среди обнаруженных предметов эпохи Древнего Рима и Греции оловянные изделия встречаются очень редко, что подтверждает предположение, что металл этот был дорогим.

Об олове упоминается в произведениях арабской литературы VIII-IX веков, а также в средневековых произведениях, описывающих путешествия и великие открытия. В Богемии и Саксонии олово стали добывать в XII веке.


Интересно, что задолго до того, как люди стали добывать чистое олово, изобрели бронзу – сплав олова с медью. По некоторым данным, бронза была известна человеку уже в 2500 году до нашей эры.

Дело в том, что олово существует в составе руд вместе с медью, поэтому при плавке получали не чистую медь, а ее сплав с оловом, то есть бронзу. Олово как случайную примесь можно обнаружить в медной посуде египетских фараонов, изготовленной в 2000 году до нашей эры.

Химические свойства олова

Олово инертно по отношению к воде и кислороду при комнатной температуре. Металл также имеет свойство покрываться тонкой оксидной пленкой на открытом воздухе. Именно химическая инертность олова в обычных условиях послужила популярности металла у изготовителей жестяной тары.


Серная и соляная кислота в разбавленном состоянии воздействуют на олово крайне медленно, а в концентрированном виде при нагревании растворяют его. При соединении с соляной кислотой получают хлорид олова, при реакции с серной – сульфат олова.

При вступлении в реакцию с разбавленной азотной кислотой получают нитрат олова, с концентрированной азотной кислотой – нерастворимую оловянную кислоту. Соединения олова имеют важное промышленное значение: их используют при производстве гальванических покрытий.

Применение олова

Этот серебристо-белый мягкий металл можно раскатать до состояния тонкой фольги. Олово не ржавеет, поэтому его широко используют в разных сферах. Чаще всего из этого металла изготавливают тару. Если олово нанести тонким слоем на другой металл, оно придаст поверхности особый блеск и гладкость.

Это свойство олова используют при изготовлении консервных банок. Олово часто используют в качестве антикоррозионного покрытия. Более третьей части всего олова, которое сегодня добывают в мире, используется при производстве пищевых емкостей для продуктов и напитков. Жестяные банки, хорошо всем знакомые, сделаны из стали, покрытой слоем олова толщиной не более 0,4 мкм.


Еще треть добываемого олова идет на изготовление припоев – сплавов со свинцом в разных пропорциях. Припои используются в электротехнике, для пайки трубопроводов. Такие сплавы могут содержать до 97% олова, медь и сурьму, увеличивающие твердость и прочность сплава.

Из олова, смешанного с сурьмой, делают посуду (в первую очередь фраже). В промышленности олово используют в различных химических соединениях.

Олово – один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, – это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.

Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита – важнейшего из минералов олова; состав его SnO 2 . Другой важный минерал – станнин, или оловянный колчедан, Cu 2 FeSnS 4 . Остальные 14 минералов элемента №50 встречаются намного реже и промышленного значения не имеют. Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента №50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% Sn, а россыпи – и того меньше: 0,01...0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд

Производство элемента №50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.

Состав полученного оловянного концентрата зависит от сырья, и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600...700°C), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова – плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.

В черновом олове примесей еще довольно много: 5...8%. Чтобы получить металл сортовых марок (96,5...99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток – 99,99985% Sn – получают преимущественно методом зонной плавки.

Еще один источник

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.

Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.

Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. Олово же соединяется с хлором очень легко. Образуется дымящаяся жидкость – хлорное олово SnCl 4 , которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.

Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т.д. Круговорот олова – дело рук человеческих.

Олово в сплавах

На консервные банки идет примерно половина мирового производства олова. Другая половина – в металлургию, для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова – бронзе, адресуя читателей к статье о меди – другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянпьтх бронз – дефицитность элемента №50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.

Техника нуждается и в других оловянных сплавах. Их, правда, почти не применяют в качестве конструкционных, материалов: они недостаточно прочны и слишком дороги. Зато у них есть другие свойства, позволяющие решать важные технические задачи при сравнительно небольших затратах материала.

Чаще всего оловянные сплавы применяют в качестве антифрикционных материалов или припоев. Первые позволяют сохранять машины и механизмы, уменьшая потери на трение; вторые соединяют металлические детали.

Из всех антифрикционных сплавов наилучшими свойствами обладают оловянные баббиты, в составе которых до 90% олова. Мягкие и легкоплавкие свинцовооловянные припои хорошо смачивают поверхность большинства металлов, обладают высокой пластичностью и сопротивлением усталости. Однако область их применения ограничивается из-за недостаточной механической прочности самих припоев.

Олово входит также в состав типографского сплава гарта. Наконец, сплавы на основе олова очень нужны электротехнике. Важнейший материал для электроконденсаторов – станиоль; это почти чистое олово, превращенное в тонкие листы (доля других металлов в станиоле не превышает 5%).

Между прочим, многие сплавы олова – истинные химические соединения элемента №50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr 3 Sn 2 плавится лишь при 1985°C. И «виновата» здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651°C – далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре – 232°C. А их сплав – соединение Mg 2 Sn – имеет температуру плавления 778°C.

Тот факт, что элемент №50 образует довольно многочисленные сплавы такого рода, заставляет критически отнестись к утверждению, что лишь 7% производимого в мире олова расходуется в виде химических соединений («Краткая химическая энциклопедия», т. 3, с. 739). Видимо, речь здесь идет только о соединениях с неметаллами.

Соединения с неметаллами

Из этих веществ наибольшее значение имеют хлориды. В тетрахлориде олова SnCl 4 растворяются иод, фосфор, сера, многие органические вещества. Поэтому и используют его главным образом как весьма специфический растворитель. Дихлорид олова SnCl 2 применяют как протраву при крашении и как восстановитель при синтезе органических красителей. Те же функции в текстильном производстве еще у одного соединения элемента №50 – станната натрия Na 2 SnO 3 . Кроме того, с его помощью утяжеляют шелк.

Промышленность ограниченно использует и окислы олова. SnO применяют для получения рубинового стекла, a SnO 2 – белой глазури. Золотисто-желтые кристаллы дисульфида олова SnS 2 нередко называют сусальным золотом, которым «золотят» дерево, гипс. Это, если можно так выразиться, самое «антисовременное» применение соединений олова. А самое современное?

Если иметь в виду только соединения олова, то это применение станната бария BaSnO 3 в радиотехнике в качестве превосходного диэлектрика. А один из изотопов олова, 119 Sn, сыграл заметную роль при изучении эффекта Мессбауэра – явления, благодаря которому был создан новый метод исследования – гамма-резонансная спектроскопия. И это не единственный случай, когда древний металл сослужил службу современной науке.

На примере серого олова – одной из модификаций элемента №50 – была выявлена связь между свойствами и химической природой полупроводникового материала. И это, видимо, единственное, за что серое олово можно помянуть добрым словом: вреда оно принесло больше, тем пользы. Мы еще вернемся к этой разновидности элемента №50 после рассказа о еще одной большой и важной группе соединений олова.

Об оловоорганике

Элементоорганических соединений, в состав которых входит олово, известно великое множество. Первое из них получено еще в 1852 г.

Сначала вещества этого класса получали лишь одним способом – в обменной реакции между неорганическими соединениями олова и реактивами Гриньяра. Вот пример такой реакции:

SnCl 4 + 4RMgX → SnR 4 + 4MgXCl

(R здесь – углеводородный радикал, X – галоген).

Соединения состава SnR 4 широкого практического применения не нашли. Но именно из них получены другие оловоорганические вещества, польза которых несомненна.

Впервые интерес к оловоорганике возник в годы первой мировой войны. Почти все органические соединения олова, полученные к тому времени, были токсичны. В качестве отравляющих веществ эти соединения не были использованы, их токсичностью для насекомых, плесневых грибков, вредных микробов воспользовались позже. На основе ацетата трифенилолова (C 6 H 5) 3 SnOOCCH 3 был создан эффективный препарат для борьбы с грибковыми заболеваниями картофеля и сахарной свеклы. У этого препарата оказалось еще одно полезное свойство: он стимулировал рост и развитие растений.

Для борьбы с грибками, развивающимися в аппаратах целлюлозно-бумажной промышленности, применяют другое вещество – гидроокись трибутилолова (С 4 Н 9) 3 SnOH. Это намного повышает производительность аппаратуры.

Много «профессий» у дилаурината дибутилолова (C 4 H 9) 2 Sn(OCOC 11 H 23) 2 . Его используют в ветеринарной практике как средство против гельминтов (глистов). Это же вещество широко применяют в химической промышленности как стабилизатор поливинилхлорида и других полимерных материалов и как катализатор. Скорость реакции образования уретанов (мономеры полиуретановых каучуков) в присутствии такого катализатора возрастает в 37 тыс. раз.

На основе оловоорганических соединений созданы эффективные инсектициды; оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.

Все это соединения четырехвалентного олова. Ограниченные рамки статьи не позволяют рассказать о многих других полезных веществах этого класса.

Органические соединения двухвалентного олова, напротив, немногочисленны и практического применения пока почти не находят.

О сером олове

Морозной зимой 1916 г. партия олова была отправлена по железной дороге с Дальнего Востока в европейскую часть России. Но на место прибыли не серебристо-белые слитки, а преимущественно мелкий серый порошок.

За четыре года до этого произошла катастрофа с экспедицией полярного исследователя Роберта Скотта. Экспедиция, направлявшаяся к Южному полюсу, осталась без топлива: оно вытекло из железных сосудов сквозь швы, пропаянные оловом.

Примерно в те же годы к известному русскому химику В.В. Марковникову обратились из интендантства с просьбой объяснить, что происходит с лужеными чайниками, которыми снабжали русскую армию. Чайник, который принесли в лабораторию в качестве наглядного примера, был покрыт серыми пятнами и наростами, которые осыпались даже при легком постукивании рукой. Анализ показал, что и пыль, и наросты состояли только из олова, без каких бы то ни было примесей.

Что же происходило с металлом во всех этих случаях?

Как и многие другие элементы, олово имеет несколько аллотропических модификаций, несколько состояний. (Слово «аллотропия» переводится с греческого как «другое свойство», «другой поворот».) При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в принадлежности его к классу металлов.

Белый металл, пластичный, ковкий. Кристаллы белого олова (его называют еще бета-оловом) тетрагональные. Длина ребер элементарной кристаллической решетки – 5,82 и 3,18 Å. Но при температуре ниже 13,2°C «нормальное» состояние олова иное. Едва достигнут этот температурный порог, в кристаллической структуре оловянного слитка начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39°C.

Кристаллы серого олова кубической конфигурации; размеры их элементарных ячеек больше – длина ребра 6,49 Å. Поэтому плотность серого олова заметно меньше, чем белого: 5,76 и 7,3 г/см 3 соответственно.

Результат превращения белого олова в серое иногда называют «оловянной чумой». Пятна и наросты на армейских чайниках, вагоны с оловянной пылью, швы, ставшие проницаемыми для жидкости, – следствия этой «болезни».

Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.

Кроме белого и серого олова, обнаружена еще одна аллотропическая модификация элемента №50 – гамма-олово, устойчивое при температуре выше 161°C. Отличительная черта такого олова – хрупкость. Как и все металлы, с ростом температуры олово становится пластичнее, но только при температуре ниже 161°C. Затем оно полностью утрачивает пластичность, превращаясь в гамма-олово, и становится настолько хрупким, что его можно истолочь в порошок.

Еще раз о дефиците

Часто статьи об элементах заканчиваются рассуждениями автора о будущем своего «героя». Как правило, рисуется оно в розовом свете. Автор статьи об олове лишен этой возможности: будущее олова – металла, несомненно, полезнейшего – неясно. Неясно только по одной причине.

Несколько лет назад американское Горное бюро опубликовало расчеты, из которых следовало, что разведанных запасов элемента №50 хватит миру самое большее на 35 лет. Правда, уже после этого было найдено несколько новых месторождений, в том числе крупнейшее в Европе, расположенное на территории Польской Народной Республики. И тем не менее дефицит олова продолжает тревожить специалистов.

Поэтому, заканчивая рассказ об элементе №50, мы хотим еще раз напомнить о необходимости экономить и беречь олово.

Нехватка этого металла волновала даже классиков литературы. Помните у Андерсена? «Двадцать четыре солдатика были совершенно одинаковые, а двадцать пятый солдатик был одноногий. Его отливали последним, и олова немного не хватило». Теперь олова не хватает не немного. Недаром даже двуногие оловянные солдатики стали редкостью – чаще встречаются пластмассовые. Но при всем уважении к полимерам заменить олово они могут далеко не всегда.

Изотопы

Олово – один из самых «многоизотопных» элементов: природное олово состоит из десяти изотопов с массовыми числами 112, 114...120, 122 и 124. Самый распространенный из них 120 Sn, на его долю приходится около 33% всего земного олова. Почти в 100 раз меньше олова-115 – самого редкого изотопа элемента №50. Еще 15 изотопов олова с массовыми числами 108...111, 113, 121, 123, 125...132 получены искусственно. Время жизни этих изотопов далеко не одинаково. Так, олово-123 имеет период полураспада 136 дней, а олово-132 всего 2,2 минуты.

Почему бронзу назвали бронзой?

Слово «бронза» почти одинаково звучит на многих европейских языках. Его происхождение связывают с названием небольшого итальянского порта на берегу Адриатического моря – Бриндизи. Именно через этот порт доставляли бронзу в Европу в старину, и в древнем Риме этот сплав называли «эс бриндиси» – медь из Бриндизи.

В честь изобретателя

Латинское слово frictio означает «трение». Отсюда название антифрикционных материалов, то есть материалов «против трения». Они мало истираются, отличаются мягкостью и тягучестью. Главное их применение – изготовление подшипниковых вкладышей. Первый антифрикционный сплав на основе олова и свинца предложил в 1839 г. инженер Баббит. Отсюда название большой и очень важной группы антифрикционных сплавов – баббитов.

Жесть для консервирования

Способ длительного сохранения пищевых продуктов консервированием в банках из белой жести, покрытой оловом, первым предложил французский повар Ф. Аппер в 1809 г.

Со дна океана

В 1976 г. начало работать необычное предприятие, которое сокращенно называют РЭП. Расшифровывается это так: разведочно-эксплуатационное предприятие. Оно размещается в основном на кораблях. За Полярным кругом, в море Лаптевых, в районе Ванькиной губы РЭП добывает с морского дна оловоносный песок. Здесь же, на борту одного из судов, работает обогатительная фабрика.

Мировое производство

По американским данным, мировое производство олова в 1975 г. составляло 174...180 тыс. т.

О́лово (лат. Stannum; обозначается символом Sn) - элемент главной подгруппы четвёртой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 50. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово - пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Олово образует две аллотропические модификации: ниже 13,2 °C устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше 13,2 °C устойчиво β-олово (белое олово) с тетрагональной кристаллической решеткой.

История

Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисеевой. Олово является (наряду с медью) одним из компонентов бронзы (см. История меди и бронзы), изобретённой в конце или середине III тысячелетия до н. э.. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: 35-11 века до н. э.).

Происхождение названия
Латинское название stannum, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть собственно олово.
Слово олово - общеславянское, имеющее соответствия в балтийских языках (ср. лит. alavas, alvas - «олово», прусск. alwis - «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo - «жёлтый», лат. albus - «белый» и пр.), так что металл назван по цвету.

Производство

В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~ 10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационном методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановления древесного угля, слои которого укладываются поочередно со слоями руды.

Применение

1. Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова - в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова - бронза (с медью). Другой известный сплав - пьютер - используется для изготовления посуды. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb 3 Sn.
2. Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
3. Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
4. Двуокись олова - очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
5. Смесь солей олова - «жёлтая композиция» - ранее использовалась как краситель для шерсти.
6. Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.